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Abstract
The present work is aimed at enhancing the

effectiveness of the moments method in solving planar

microwave circuits problems. It stems from the same

analytical model as [1,2]. Its novelty consists in
introducing a technique, of fundamental mode
sa mp I in g, that substantially reduces the complexity of

the analysis and the computation time involved in the

characterization of all practical disco ntinuities.
Moreover, the numerical results are in very good
agreement with experimental data.

Introduction

The characterization of discontinuities in planar

circuits for microwave frequencies requires the use of

rigourous approaches that take into account all
physical effects.

In [1,2] a powerful and effective method is

presented for the study of discontinuities such as the

Microstrip-to- Slotline Transition and relate d

structures, such as the Slot Antenna, the Microstrip

Open-End and the Shorted Slotline.

Only transverse currents are neglected, that is

allowable for typical impedance levels in t h e
microwave range. Near field effects, including surf ace
waves and radiation are included in the m o m e n t

method solution. The only drawback of the method k

constituted by the great numerical complexity

involved in the model, that sets a practical limit to
accuracy. It is therefore important to consider
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analytic~ ways of reducing the si;e of the above task.
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Top view of Microstrip-to-Slotline Transition.

2 - The basic moments method.
The method k summarized bv considering the

typical Microstrip-to-Slotline Transition, whose top and

cross sectional views are depicted in fig. 1 and 2
respectively.
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Fig. 2 Cross-sectional view of Microstrip-to. Slotline Transition.

Neglecting, as stated, transverse electric and

magnetic currents (Jz, E =), the system of integral

equations to be solved, is the following:

.

JJJx(x,-dz)CO(Z’)~ (X, Z; X’,Z’) d X’ d Z’ +

(1)

mi:roatrip

1/
.

‘1 ~ ~,(),z)6(x’) &2 &, Z; X’, z’)d X’ d Z’ = E,(x,-d,z)

Sdllirle

at the microstrip interface, and:

P

1/J~X,-CtZ)t@’)A% (x, q X’, Z) d X’ &’ +

Jmj.mx,r,m (2)
.

1/

+ 1 E~x,o,z) 6 (+ Y: (X, G X’, Z’) d X’ d Z; =J~x,O,z)

.
sG&3
at the slotline interface.

The exact Green functions of the dielectric “slab”,

~::, A& A%, ~22
xx? correspond respectively to the

expressions (2a,2b,2c,2d) in [2].
A fundamental step in the application of the

moments method is constituted by the choice of the set

of separable functions in terms of which the above
system of integral equation is discretized, namely,

JX (X, -d, Z) = E(x) tO(Z) (3)

EX (X, O, Z) = M(z) 8(X) (4)

In order to take into account edge effects, one sets

\ O elsewhere (O elsewhere
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The longitudinal dependence of the current in the

strip is expanded in piecewise sinusoidal (Pws)
functions as.

W=*.W)
with

{

sink. lH-lx-x~l): Ix-x. I<H, lz[c~

Ii (x)= sin k. H

O elsewhere

(5)

Here Xn = -Lm + nH and H, are the centre and the

half-length of the PWS mode respectively; Wm and Lm

are the length and the terminal location of the

microstrip (fig. 1). The choice of ke k the Sme as in [21.

In analogous manner, for the magnetic current

density on the slot we set:

with

[

sink(H-lz-~1): Iz-%I<H, lxl<~

M“ (Z)= sin b H

\
o elsewhere

(6)

Zn= -L~ +nH.

A bottle-neck in the mathematical model is met
when adopting an excitation term that represents as

closely as possible the actual situation of fundamental
mode incidence in the microstrip-slotline circuit, with

disturbances in the near field.
With reference to [1,2], there are four different

expansions for the current density; as remarked

before, the radiation (non-guided) field, is only

considered near the junction, assuming at a certain

distance, the fundamental mode to be present.
The discretization of the integral equations (1-2) by

the moments method leads to the following system of
M+N+2 linear equations:

“[1]1

LTJ (lo)

The rather complicated elements of the matrix

blocks and of the column vectors, obtainable from the
integrals in [2], are not repeated here for the sake of
brevity.

3 - Fundamental mode behaviour.
Upon consideration of the above integrals, one

notices the large number of coefficients of different

kinds that are involved in solving system (10).

In particular, the coefficients that present the
greatest difficulty in implementation and require the

largest computer times are those of the cuqent sources

relative to the fundamental mode; in [2] these are

defined by the integrals (15,17,20,21,22,23).
In the present approach the evaluation of these

integrals is circumvented by using an expansion in

terms of piecewise sinusoidal functions, only (PWS),

and avoiding the use of the exponential, representing

the fundamental modes of the lines.
Pws
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Fig.3 Qualitative interpretation of the Galerkin method in

solving (1.1) and (1.2)

Fig.3 demonstrates the technique adopted. Taking as
x the longitudinal axis of the microstrip (or slotline),

the contribution to the electric field Ex(x,-d,z), given by

I sOurce is seen through the testa single PWS-function, s ,

pWS-function, I~t. Due to the decay of the electric

field produced by I~M@, it is evident that the scalar

product with I? is of lesser magnitude than that

with the n-1 -th test function InE~ , for the latter is

closer to the source.
Fig.4 gives the variation of the coupling coefficients

z us, between a test function and a source located along

the same line. vs. their mutual distance.

s l.- Sl*H[md

Fig. 4 Decay of the magnitude lZ~,l vs.distanct? between ~“rg and

r~twith H=O 028*.lIj e f=3 GHz

Analogous considerations and results hold when the

PWS-source and test functions are located on different

lines.

In the light of the above considerations,we carry out

a PWS sampling of the fundamental mode, that we

consider to be present at a certain distance from the

discontinuity.

We take, in fact, the following expression for the

unknown current density over the microstrip
. .

J, (X, -d, Z)= ~L ~ (X) 03(Z)
, =1 (11)

and observing that



Jx(-b+ sH, -d, z)= 1, 6) (Z)

we remark that, after a sufficiently large value s=k,

the s-th coefficient of the longitudinal expansion (11)

is given by

I,=d(-~+’H)L -re-j(-h+s H)L (12)

Identical considerations hold for the magnetic

current density, along thtf slotline, so that, we have:

E. (X, O, Z)= ~V, h% (Z) ~(X)
, 4 (13)

while

Hence, as from a given value s=k, we have,

v,= T~-J (-h+ $H)&
(14)

Finally, we obtain the following sampled de-

compositions of the unknown electric and magnetic

currents
k-1

J. (X, d, Z)= ~~ E, (X W(Z)+
,.1

k-1

R (x, 0, Z)= XV, M, (Z) & (X)+
S=l

+K~Te-j tLI+ ‘H)~C~ (z) 8 (x)

,Sk (16)
Recalling the previous considerations about the

decay of the contributions to the field Ex (x,-d,z) and to

the current JX(X,O,Z), the value of K ~ax is determined

as the minimum value that achieves convergence in

the results.

In our numerical examples, in fact, a convergent

solution is achieved computing the same number of
coefficients in the integrals (14,16,18) in [2], with

N=M=4 , k=N+l and H=0.03.k0.

It is important to remark, however, that by means of

the above fundamental mode sampling, one avoids the

computation of six different kinds of coefficients,
namely, those defined integrals

(15,16,17,21,22,23) in [2], wh~h a~s~ involve the
greatest numerical effort.

The method described allows the solution to be

reached by computing just three types of integrals ,

namely (14,16, 18), out of the nine kinds occurring in

[2], which, moreover, are the easiest to evaluate.
We are then reduced to the following c 01 u m n

vectors:

1 ) [Zr] (N+l ) xl column vector with elements,

(17a)

2 ) [AT] (N+l) x 1 column vector with elements,

A: =K~[e-j (-L.+sH)13A~2,]

s=k (17b)

3 ) [Ar] (M+l) xl column vector with elements,

4) [YT] (M+l) xl column vector with elements,

(17d)

The driving term in the system (1.8) is given by the
following_ column vector

1 ) [1’”’1 (N+l) xl column vector with elements,

(18a)

2) [Vin c 1 (M+l) xl column vector with elements,

In the above expansions, Z ~~ corresponds to the

integral (14), Yn~ to (16) and A~~ to (18) of [2] ( A~~

is given b (19)). The elements of the block matrices

[Z], [A”], fi’1] [Y] are the same as in [2],,,

4 - Results

4.1 Microstrip-to Slotline Transition.
Fig.5 shows the behaviour of the VSWR for the

junction of fig. 1 where:

vswR=Ef
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Fig.5 VSWR versus frequency for microstrip-slotline transition

By comparing the results of the present method with

the theoretical results of [2] and with the
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measurements reported in [3], we notice a broadening

of the band pass predicted by our model, in slightly

closer agreement with [3],[5].

Further checks were carried out with regard to the

driving point impedance of the junction, by comparing

our results with the numerical data of [2].

In fig.6 we can see very good agreement with the

above theory, apart that a somewhat higher band edge

is predicted by our results.

I x m=url d Y.@!cacf4. [21

Fig.6 Smith chart plot of impe&nce versus jiequency for micrortrip .Iotline

transition. The reference plane i$ cm the center of the cross secrion.

4.2 Open-end Microstrip.

A problem of great interest is posed by the accurate
characterization of the frequency behaviour of an open
end microstrip, whose geometry is reported in fig.7.
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Fig.7 Geometry of an open-end microstrip

Fig.8 compares the conductance of open end

microstrip, as obtained with our method, with the

numerical data of [1] and the experimental data of [4].
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A number of similar comparison were carried out
yielding similar results.

Conclusions
We present a modified version of the dynamic model

for planar circuits simulation [2], based on

“fundamental mode sampling”. The results obtained by

this technique, feature somewhat closer agreement

with experiment and particularly much reduced
numerical effort and computation times.

We believe this approach will enhance the
applicability of an already very useful and flexible
method.
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Fig.g Conductance of open-end microstrip
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